
Week 4 - Monday



 What did we talk about last time?
 Software processes
 Waterfall model
 Prototyping
 Risk management and the spiral model







 An iterative process contains repeated tasks
 Example: While debugging code, you might run tests, do fixes, run 

tests, do fixes, and so on
 An incremental process produces output in parts
 Processes can be either iterative or incremental, both iterative 

and incremental, or neither
 The purest version of waterfall is neither
 It's not iterative because each phase is separate and not repeated
 It's not incremental because a working product is only available at 

the end



 The spiral model is built around 
risk management

 Multiple cycles are used
 Each cycle starts by looking at 

goals
 Then evaluate different 

approaches to the goals in terms 
of risk

 The model on the right shows 
how the spiral model can be 
applied to waterfall



 Other than its 
focus on risk, 
people also talk 
about the spiral 
model because it's 
an early example 
of an iterative 
process

Identify Objectives 
and Constraints

Product
Vision

Realize Solution

Problem

Identify Alternatives

CompleteIncomplete

Potential 
Solutions

Resolve Risks and 
Evaluate Solutions

Selected 
Solution

Draft 
Realization

Verify and Validate

Realization

Software 
Product



 Iteration is the main way you get quality
 It's just so hard to get it right the first time!
 Software development still involves significant trial and error

 Even the waterfall model usually has iterative steps in practice
 Prototype evolution is iterative
 The spiral process is iterative
 The problem with iteration is rework
 Redoing or throwing out previous work



 Iteration is found lurking everywhere to greater or lesser 
degrees, but being incremental is more binary

 To be incremental, final products must be produced along the 
way

 Waterfall is not incremental because the products produced 
along the way are just used for the next step



 The Rational Unified Process (RUP) is a process that is both 
iterative and incremental

 Pure RUP is now rarely used, but it was a step in the evolution of 
modern agile methods

 RUP creates products in increments called releases made during a 
cycle
 Each release is a working product

 Each cycle has four phases: inception, elaboration, construction, 
and transition

 Each phase has iterations divided into five workflows: 
requirements, analysis, design, implementation, and test



 Inception: Product vision is 
developed

 Elaboration: Specifications 
become more detailed as 
core code is written

 Construction: Majority of 
code is written and tested, 
refining designs as needed

 Transition: Customers test 
the product

Inception

Product
Vision

Draft 
Specification

Product 
Release

Elaboration

Central Code
High-Level 

Design
Detailed 

Specification

Transition

Code Tests

Product 
Release

Construction

Complete Incomplete



The core workflows of 
requirements, analysis, 
design, 
implementation, and 
test are done 
throughout the phases, 
but some phases have 
more of one workflow 
than others

Phases

Core Workflows Inception Elaboration Construction Transition

Requirements

Analysis

Design

Implementation

Test



 A lot of work has been done with RUP, and it has templates, 
checklists, and other tools

 It can be adapted to projects with different sizes
 It has benefits of all incremental processes
 Usable product early on
 Total failure less likely

 Its iterative nature makes it easier to schedule work, improve 
existing product, and incorporate risk management



 It's complex, and you have to understand it well
 It has a lot of documentation and management
 Heavyweight process

 Development cycles are long, making it hard to change 
requirements



 Versions of waterfall were the only commonly used software 
development model until the 1990s

 A lot of people were unhappy with it
 In response, some developers created the Agile Manifesto, a 

statement about developing software that was diametrically 
opposed to waterfall

 The ideas caught on, and many developers embraced the idea, 
creating a series of different methods

 Sometimes businesses claimed to be changing over to agile 
methods but really just renamed parts of their waterfall approach



We are uncovering better ways of developing software by doing it 
and helping others do it. Through this work we have come to 
value:
 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan
That is, while there is value in the items on the right, we value the 
items on the left more.



1. Our highest priority is to 
satisfy the customer through 
early and continuous delivery 
of valuable software.

2. Welcome changing 
requirements, even late in
development. Agile processes 
harness change for the 
customer's competitive 
advantage.

3. Deliver working software 
frequently, from a couple of 
weeks to a couple of months, 
with a preference to the 
shorter timescale.

4. Business people and 
developers must work 
together daily throughout the 
project.

5. Build projects around 
motivated individuals. Give 
them the environment and 
support they need, and trust 
them to get the job done.

6. The most efficient and 
effective method of 
conveying information to and 
within a development team is 
face-to-face conversation.

7. Working software is the 
primary measure of progress.

8. Agile processes promote 
sustainable development. 
The sponsors, developers, 
and users should be able to 
maintain a constant pace 
indefinitely.

9. Continuous attention to 
technical excellence and 
good design enhances agility.

10. Simplicity—the art of 
maximizing the amount of 
work not done—is essential.

11. The best architectures, 
requirements, and designs
emerge from self-organizing 
teams.

12. At regular intervals, the team 
reflects on how to become 
more effective, then tunes 
and adjusts its behavior 
accordingly.



 The ideas caught on, spawning specific methods such as Extreme 
Programming, the Crystal Method, Dynamic System 
Development Method, and Scrum

 These methods all have the following characteristics:
 Incremental process with increments ranging from a week to a few 

months
 Customers are closely and continuously involved in the product
 Lightweight process minimizing documentation and management tasks
 Test driven, using automated test suites to avoid the problems of frequent 

code change



 Agile processes are 
similar, following a 
lifecycle much like the 
one on the right

Refine Specifications

Product
Vision

Deliverable 
Product

Create Increment

Released

Improve Process

Evaluate Increment

Realization
Not Released



 Product specifications can change without destroying all the 
work that's been done

 Customers get a software product quickly
 With new versions coming frequently

 Bad projects can be canceled early
 Time is saved because of lightweight requirements for 

documentation and management
 Duplication of effort is usually reduced



 Customers have to be involved constantly, but most 
customers don't want to spend their time giving feedback

 Continuous refinement of a product can lead to a bad design 
through an evolution of ideas that seemed like good ideas at 
the time

 For large projects, it's hard to coordinate many teams on a 
product that's evolving unpredictably without documentation

 It's hard to predict the outcomes of agile methods





 Agile methods are popular
 It's hard to get reliable data on how popular because private 

companies do not have to disclose what they do
 Some agile sites say that over 2/3 of all development is agile 

or "leaning agile"
 But agile people are always going to overrepresent agile

 Scrum is one of the most popular agile methods
 Kanban is another

 Scrum is a process framework that can be adapted to 
different settings



 Like other workflows, Scrum 
can be modeled with an 
activity diagram showing 
familiar steps

 Everything is built around a 
cycle called a sprint

 Because sprints repeat, the 
process is iterative

 Because each sprint 
produces a shippable 
product, the process is 
incremental

Create Product 
Backlog

Product
Vision

Product 
Backlog

Shippable 
Product

Sprint 
Backlog

Sprint Review

Sprint Execution

Product 
Backlog

Sprint 
Backlog

Sprint Retrospective

Product 
Backlog

Sprint Planning

Project DoneProject Not Done



 Recall that agile methods are built around a product backlog, 
containing high-level descriptions of the desired features of the 
product
 Items can be added to or removed from the product backlog at any time

 Some of the product backlog is chosen for a sprint
 Making the sprint backlog

 The sprint backlog is implemented, making a new shippable 
product

 A sprint review allows customers to give feedback on the product
 The sprint retrospective is used to figure out how to do the next 

sprint better



 Product owner (PO)
 Responsible for what's in the product
 Customer representative to the other developers
 Updates the product backlog

 Scrum master (SM)
 Guides the team through the Scrum process
 Facilitator and coach
 Protects the team from outside interference

 Team members
 People who decide how to build the project and build it
 Typically, everyone works on everything



 Product backlog
 A prioritized list of product features that haven't been implemented yet
 Product backlog items (PBIs) are the elements of this list
 Priorities are based on business value

 Sprint backlog
 Subset of PBIs
 Tasks needed to complete them
 Estimates of effort needed for each one

 Potentially shippable increment (PSI)
 Product that could be shipped to the customer (though maybe without all the desired 

features)
 A PBI on the sprint backlog that wasn't finished goes back into the product backlog



 Product backlog creation
 The PO creates the product backlog for the first time, using customer input

 Product backlog refinement
 The PO constantly adds and deletes PBIs from the product backlog based on feedback from stakeholders

 Sprint planning
 The PO, SM, and other team members select PBIs, maybe with a particular sprint goal
 PBIs are chosen by priority, taking into account how much can be done by estimating the work for the tasks 

for a PBI
 Sprint execution
 Everyone performs the tasks to implement the sprint backlog PBIs

 Sprint review
 A product demo where stakeholders discuss what was added and how they feel about it
 Goal: improving the product

 Sprint retrospective
 The team discusses what went well, what didn't, and how the next sprint can be better
 Goal: improving the process



 The product backlog is a prioritized list of PBIs
 Each PBI consists of
 Specification
 Priority
 Estimate of effort
 Acceptance criteria



 PBI specifications can be less formal and more general than 
requirements in waterfall

 They could be traditional requirements statements, UI diagrams, 
use cases, user stories, bugs, design tasks, research tasks, etc.

 They start at broad levels of abstraction and are refined over time
 PBIs are refined into detailed, sprintable PBIs as needed, based on 

priorities
 Product backlogs should contain enough refined PBIs for two or 

three sprints



 We mentioned user stories in the discussion about requirements
 User stories are the most popular way of specifying features in Scrum
 User story format:
 As a <user role> I want to <goal> so that <benefit>.

 Examples:
 As a course scheduler I want to determine whether students can take other sections of a 

course so that I can see if I can cancel a section with students already enrolled in it.
 As a shopper I want to see whether an item is still on sale so that I can buy it more 

cheaply.
 As an internet user I want to secure my devices so that I can protect my private 

information.
 As an electric utility customer I want to see my usage over several years so that I can 

analyze it to budget my electricity costs more exactly.





 Finish Scrum
 Review



 Read Chapter 3: Scrum for Wednesday
 Use my feedback to improve your projects
 Project 1 final due Friday before midnight!

 Exam 1 next Monday


	COMP 3100
	Last time
	Questions?
	Iterative and Incremental Processes
	Iterative and Incremental Processes
	Review: spiral model
	Spiral model viewed as an iterative process
	Iterative processes
	Incremental processes
	Rational Unified Process
	RUP phases
	Workflows in the RUP
	Advantages of RUP
	Disadvantages of RUP
	Agile
	Agile manifesto
	Agile principles
	Agile characteristics
	Agile lifecycle
	Agile advantages
	Agile disadvantages
	Scrum
	Scrum
	Scrum process
	Sprints
	Scrum roles
	Scrum artifacts
	Scrum activities
	Managing the product backlog
	PBI specifications
	User stories
	Upcoming
	Next time…
	Reminders

