
Week 4 - Monday



 What did we talk about last time?
 Software processes
 Waterfall model
 Prototyping
 Risk management and the spiral model







 An iterative process contains repeated tasks
 Example: While debugging code, you might run tests, do fixes, run 

tests, do fixes, and so on
 An incremental process produces output in parts
 Processes can be either iterative or incremental, both iterative 

and incremental, or neither
 The purest version of waterfall is neither
 It's not iterative because each phase is separate and not repeated
 It's not incremental because a working product is only available at 

the end



 The spiral model is built around 
risk management

 Multiple cycles are used
 Each cycle starts by looking at 

goals
 Then evaluate different 

approaches to the goals in terms 
of risk

 The model on the right shows 
how the spiral model can be 
applied to waterfall



 Other than its 
focus on risk, 
people also talk 
about the spiral 
model because it's 
an early example 
of an iterative 
process

Identify Objectives 
and Constraints

Product
Vision

Realize Solution

Problem

Identify Alternatives

CompleteIncomplete

Potential 
Solutions

Resolve Risks and 
Evaluate Solutions

Selected 
Solution

Draft 
Realization

Verify and Validate

Realization

Software 
Product



 Iteration is the main way you get quality
 It's just so hard to get it right the first time!
 Software development still involves significant trial and error

 Even the waterfall model usually has iterative steps in practice
 Prototype evolution is iterative
 The spiral process is iterative
 The problem with iteration is rework
 Redoing or throwing out previous work



 Iteration is found lurking everywhere to greater or lesser 
degrees, but being incremental is more binary

 To be incremental, final products must be produced along the 
way

 Waterfall is not incremental because the products produced 
along the way are just used for the next step



 The Rational Unified Process (RUP) is a process that is both 
iterative and incremental

 Pure RUP is now rarely used, but it was a step in the evolution of 
modern agile methods

 RUP creates products in increments called releases made during a 
cycle
 Each release is a working product

 Each cycle has four phases: inception, elaboration, construction, 
and transition

 Each phase has iterations divided into five workflows: 
requirements, analysis, design, implementation, and test



 Inception: Product vision is 
developed

 Elaboration: Specifications 
become more detailed as 
core code is written

 Construction: Majority of 
code is written and tested, 
refining designs as needed

 Transition: Customers test 
the product

Inception

Product
Vision

Draft 
Specification

Product 
Release

Elaboration

Central Code
High-Level 

Design
Detailed 

Specification

Transition

Code Tests

Product 
Release

Construction

Complete Incomplete



The core workflows of 
requirements, analysis, 
design, 
implementation, and 
test are done 
throughout the phases, 
but some phases have 
more of one workflow 
than others

Phases

Core Workflows Inception Elaboration Construction Transition

Requirements

Analysis

Design

Implementation

Test



 A lot of work has been done with RUP, and it has templates, 
checklists, and other tools

 It can be adapted to projects with different sizes
 It has benefits of all incremental processes
 Usable product early on
 Total failure less likely

 Its iterative nature makes it easier to schedule work, improve 
existing product, and incorporate risk management



 It's complex, and you have to understand it well
 It has a lot of documentation and management
 Heavyweight process

 Development cycles are long, making it hard to change 
requirements



 Versions of waterfall were the only commonly used software 
development model until the 1990s

 A lot of people were unhappy with it
 In response, some developers created the Agile Manifesto, a 

statement about developing software that was diametrically 
opposed to waterfall

 The ideas caught on, and many developers embraced the idea, 
creating a series of different methods

 Sometimes businesses claimed to be changing over to agile 
methods but really just renamed parts of their waterfall approach



We are uncovering better ways of developing software by doing it 
and helping others do it. Through this work we have come to 
value:
 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan
That is, while there is value in the items on the right, we value the 
items on the left more.



1. Our highest priority is to 
satisfy the customer through 
early and continuous delivery 
of valuable software.

2. Welcome changing 
requirements, even late in
development. Agile processes 
harness change for the 
customer's competitive 
advantage.

3. Deliver working software 
frequently, from a couple of 
weeks to a couple of months, 
with a preference to the 
shorter timescale.

4. Business people and 
developers must work 
together daily throughout the 
project.

5. Build projects around 
motivated individuals. Give 
them the environment and 
support they need, and trust 
them to get the job done.

6. The most efficient and 
effective method of 
conveying information to and 
within a development team is 
face-to-face conversation.

7. Working software is the 
primary measure of progress.

8. Agile processes promote 
sustainable development. 
The sponsors, developers, 
and users should be able to 
maintain a constant pace 
indefinitely.

9. Continuous attention to 
technical excellence and 
good design enhances agility.

10. Simplicity—the art of 
maximizing the amount of 
work not done—is essential.

11. The best architectures, 
requirements, and designs
emerge from self-organizing 
teams.

12. At regular intervals, the team 
reflects on how to become 
more effective, then tunes 
and adjusts its behavior 
accordingly.



 The ideas caught on, spawning specific methods such as Extreme 
Programming, the Crystal Method, Dynamic System 
Development Method, and Scrum

 These methods all have the following characteristics:
 Incremental process with increments ranging from a week to a few 

months
 Customers are closely and continuously involved in the product
 Lightweight process minimizing documentation and management tasks
 Test driven, using automated test suites to avoid the problems of frequent 

code change



 Agile processes are 
similar, following a 
lifecycle much like the 
one on the right

Refine Specifications

Product
Vision

Deliverable 
Product

Create Increment

Released

Improve Process

Evaluate Increment

Realization
Not Released



 Product specifications can change without destroying all the 
work that's been done

 Customers get a software product quickly
 With new versions coming frequently

 Bad projects can be canceled early
 Time is saved because of lightweight requirements for 

documentation and management
 Duplication of effort is usually reduced



 Customers have to be involved constantly, but most 
customers don't want to spend their time giving feedback

 Continuous refinement of a product can lead to a bad design 
through an evolution of ideas that seemed like good ideas at 
the time

 For large projects, it's hard to coordinate many teams on a 
product that's evolving unpredictably without documentation

 It's hard to predict the outcomes of agile methods





 Agile methods are popular
 It's hard to get reliable data on how popular because private 

companies do not have to disclose what they do
 Some agile sites say that over 2/3 of all development is agile 

or "leaning agile"
 But agile people are always going to overrepresent agile

 Scrum is one of the most popular agile methods
 Kanban is another

 Scrum is a process framework that can be adapted to 
different settings



 Like other workflows, Scrum 
can be modeled with an 
activity diagram showing 
familiar steps

 Everything is built around a 
cycle called a sprint

 Because sprints repeat, the 
process is iterative

 Because each sprint 
produces a shippable 
product, the process is 
incremental

Create Product 
Backlog

Product
Vision

Product 
Backlog

Shippable 
Product

Sprint 
Backlog

Sprint Review

Sprint Execution

Product 
Backlog

Sprint 
Backlog

Sprint Retrospective

Product 
Backlog

Sprint Planning

Project DoneProject Not Done



 Recall that agile methods are built around a product backlog, 
containing high-level descriptions of the desired features of the 
product
 Items can be added to or removed from the product backlog at any time

 Some of the product backlog is chosen for a sprint
 Making the sprint backlog

 The sprint backlog is implemented, making a new shippable 
product

 A sprint review allows customers to give feedback on the product
 The sprint retrospective is used to figure out how to do the next 

sprint better



 Product owner (PO)
 Responsible for what's in the product
 Customer representative to the other developers
 Updates the product backlog

 Scrum master (SM)
 Guides the team through the Scrum process
 Facilitator and coach
 Protects the team from outside interference

 Team members
 People who decide how to build the project and build it
 Typically, everyone works on everything



 Product backlog
 A prioritized list of product features that haven't been implemented yet
 Product backlog items (PBIs) are the elements of this list
 Priorities are based on business value

 Sprint backlog
 Subset of PBIs
 Tasks needed to complete them
 Estimates of effort needed for each one

 Potentially shippable increment (PSI)
 Product that could be shipped to the customer (though maybe without all the desired 

features)
 A PBI on the sprint backlog that wasn't finished goes back into the product backlog



 Product backlog creation
 The PO creates the product backlog for the first time, using customer input

 Product backlog refinement
 The PO constantly adds and deletes PBIs from the product backlog based on feedback from stakeholders

 Sprint planning
 The PO, SM, and other team members select PBIs, maybe with a particular sprint goal
 PBIs are chosen by priority, taking into account how much can be done by estimating the work for the tasks 

for a PBI
 Sprint execution
 Everyone performs the tasks to implement the sprint backlog PBIs

 Sprint review
 A product demo where stakeholders discuss what was added and how they feel about it
 Goal: improving the product

 Sprint retrospective
 The team discusses what went well, what didn't, and how the next sprint can be better
 Goal: improving the process



 The product backlog is a prioritized list of PBIs
 Each PBI consists of
 Specification
 Priority
 Estimate of effort
 Acceptance criteria



 PBI specifications can be less formal and more general than 
requirements in waterfall

 They could be traditional requirements statements, UI diagrams, 
use cases, user stories, bugs, design tasks, research tasks, etc.

 They start at broad levels of abstraction and are refined over time
 PBIs are refined into detailed, sprintable PBIs as needed, based on 

priorities
 Product backlogs should contain enough refined PBIs for two or 

three sprints



 We mentioned user stories in the discussion about requirements
 User stories are the most popular way of specifying features in Scrum
 User story format:
 As a <user role> I want to <goal> so that <benefit>.

 Examples:
 As a course scheduler I want to determine whether students can take other sections of a 

course so that I can see if I can cancel a section with students already enrolled in it.
 As a shopper I want to see whether an item is still on sale so that I can buy it more 

cheaply.
 As an internet user I want to secure my devices so that I can protect my private 

information.
 As an electric utility customer I want to see my usage over several years so that I can 

analyze it to budget my electricity costs more exactly.





 Finish Scrum
 Review



 Read Chapter 3: Scrum for Wednesday
 Use my feedback to improve your projects
 Project 1 final due Friday before midnight!

 Exam 1 next Monday


	COMP 3100
	Last time
	Questions?
	Iterative and Incremental Processes
	Iterative and Incremental Processes
	Review: spiral model
	Spiral model viewed as an iterative process
	Iterative processes
	Incremental processes
	Rational Unified Process
	RUP phases
	Workflows in the RUP
	Advantages of RUP
	Disadvantages of RUP
	Agile
	Agile manifesto
	Agile principles
	Agile characteristics
	Agile lifecycle
	Agile advantages
	Agile disadvantages
	Scrum
	Scrum
	Scrum process
	Sprints
	Scrum roles
	Scrum artifacts
	Scrum activities
	Managing the product backlog
	PBI specifications
	User stories
	Upcoming
	Next time…
	Reminders

